The Gap-Tooth Scheme for Homogenization Problems

نویسندگان

  • Giovanni Samaey
  • Dirk Roose
  • Ioannis G. Kevrekidis
چکیده

An important class of problems exhibits smooth behaviour in space and time on a macroscopic scale, while only a microscopic evolution law is known. For such time-dependent multi-scale problems, an “equationfree framework” has been proposed, of which the gap-tooth scheme is an essential component. The gap-tooth scheme is designed to approximate a time-stepper for an unavailable macroscopic equation in a macroscopic domain; it uses appropriately initialized simulations of the available microscopic model in a number of small boxes, which cover only a fraction of the domain. We analyze the convergence of this scheme for a parabolic homogenization problem with non-linear reaction. In this case, the microscopic model is a partial differential equation with rapidly oscillating coefficients, while the unknown macroscopic model is approximated by the homogenized equation. We show that our method approximates a finite difference scheme of arbitrary (even) order for the homogenized equation when we appropriately constrain the microscopic problem in the boxes. We illustrate this theoretical result with numerical tests on several model problems. We also demonstrate that it is possible to obtain a convergent scheme without constraining the microscopic code, by introducing buffer regions around the computational boxes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Damping factors for the gap-tooth scheme

An important class of problems exhibits macroscopically smooth behaviour in space and time, while only a microscopic evolution law is known. For such time-dependent multi-scale problems, the gap-tooth scheme has recently been proposed. The scheme approximates the evolution of an unavailable (in closed form) macroscopic equation in a macroscopic domain; it only uses appropriately initialized sim...

متن کامل

Numerical Homogenization for Indefinite H(curl)-problems

In this paper, we present a numerical homogenization scheme for indefinite, timeharmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that end, we exten...

متن کامل

Comparison between deep chamfer and 135 ̊ tooth preparation designs on marginal fit and marginal gap in posterior metal-ceramic crowns

Background and Aims: One of the most important challenges for dentists is providing a crown with appropriate marginal fit and gap. The 135-degree tooth preparation found to have some advantages such as technical ease and appropriate finish line record. Despite the advantages of 135-degree tooth preparation, scant research has been done in this area. Therefore, the aim of this study was to compa...

متن کامل

A Newton-scheme Framework for Multiscale Methods for Nonlinear Elliptic Homogenization Problems∗

In this contribution, we present a very general framework for formulating multiscale methods for nonlinear elliptic homogenization problems. The framework is based on a very general coupling of one macroscopic equation with several localized fine-scale problems. In particular, we recover the Heterogeneous Multiscale Method (HMM), the Multiscale Finite Element Method (MsFEM) and the Variational ...

متن کامل

Linearized Numerical Homogenization Method for Nonlinear Monotone Parabolic Multiscale Problems

We introduce and analyze an efficient numerical homogenization method for a class of nonlinear parabolic problems of monotone type in highly oscillatory media. The new scheme avoids costly Newton iterations and is linear at both the macroscopic and the microscopic scales. It can be interpreted as a linearized version of a standard nonlinear homogenization method. We prove the stability of the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2005